
Wine Quality Linear Regression Analysis

Executive Summary
This technical report presents a comprehensive analysis of wine quality factors for Vinhos Verdes,
a Portuguese wine company accounting for approximately 15% of all wine sold in Portugal.
Through statistical modeling and exploratory data analysis, we investigate how various chemical
and physical wine attributes affect overall quality ratings. Our predictive model, evaluated using
Mean Square Error (MSE), provides actionable insights for optimizing wine production parame)
ters with respect to quality. Upon completion of this report we found that, We advise creating red
wine with 4.0 g/L fixed acidity, 1.23 g/L citric acid, 0.6 g/L residual sugar, 0.01 g/L chlorides,
140 mg/L free sulfur dioxide, and 2.0 g/L sulphates. This will give a wine quality between
6.47 and 9.8.

Technical Report
We were tasked by Vinhos Verdes, a Portugal wine company that accounts for about 15% of all
wine sold in Portugal, to investigate the way different attributions inside of the wine affect the
wine’s quality. Our model will be evaluated using a quadratic loss function and more specifically
Mean Squared Error (MSE).

Exploratory Data Analysis
We started by importing necessary Python libraries to facilitate data analysis, manipulation, and
visualization.

#importing require modules for our data analysis
import os
import numpy as np
import polars as pl
import pandas as pd
import seaborn.objects as so
import matplotlib.pyplot as plt
import statsmodels.api as sm
import statsmodels.formula.api as smf
from statsmodels.stats.outliers_influence import variance_inflation_factor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import seaborn as sns

#Load in our dataset
wdata = pd.read_csv('Project1_data.csv')
wdata.head().T
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0 1 2 3 4

fixed acidity 7.4000 7.8000 7.800 11.200 7.4000

volatile acidity 0.7000 0.8800 0.760 0.280 0.7000

citric acid 0.0000 0.0000 0.040 0.560 0.0000

residual sugar 1.9000 2.6000 2.300 1.900 1.9000

chlorides 0.0760 0.0980 0.092 0.075 0.0760

free sulfur dioxide 11.0000 25.0000 15.000 17.000 11.0000

total sulfur dioxide 34.0000 67.0000 54.000 60.000 34.0000

density 0.9978 0.9968 0.997 0.998 0.9978

pH 3.5100 3.2000 3.260 3.160 3.5100

sulphates 0.5600 0.6800 0.650 0.580 0.5600

alcohol 9.4000 9.8000 9.800 9.800 9.4000

quality 5.0000 5.0000 5.000 6.000 5.0000

is_red 1.0000 1.0000 1.000 1.000 1.0000

The provided data has several variables all that are involved in the process of creating a high
quality wine. The data was created for the purpose of analyzing wine quality and has the variables
for an exploratory analysis on wine quality. Vinhos Verdes gave us data they collected from
2004)2007 on different wine quality. This data was collected by the official certification entity
(CVRVV), and measured via a computerized system (iLab). The data can be found at this link:

https://archive.ics.uci.edu/dataset/186/wine+quality.

The company and more information about this data can be found in these links:

https://www.vinhoverde.pt/pt/ https://www.sciencedirect.com/science/article/abs/pii/S01679236
09001377?via%3Dihub

The dataset features 13 variables representing wine samples and quality ratings.Each row sum)
marizes a wine’s chemical and physical profile.

Here, we checked variable types and missing values to help evaluate analysis viability and
modeling challenges.

#Understand variable types and check for missing values
display(wdata.info())
display(wdata.describe().T)
display(wdata.isnull().sum())
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<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6497 entries, 0 to 6496
Data columns (total 13 columns):
 #   Column                Non-Null Count  Dtype  
---  ------                --------------  -----  
 0   fixed acidity         6497 non-null   float64
 1   volatile acidity      6497 non-null   float64
 2   citric acid           6497 non-null   float64
 3   residual sugar        6497 non-null   float64
 4   chlorides             6497 non-null   float64
 5   free sulfur dioxide   6497 non-null   float64
 6   total sulfur dioxide  6497 non-null   float64
 7   density               6497 non-null   float64
 8   pH                    6497 non-null   float64
 9   sulphates             6497 non-null   float64
 10  alcohol               6497 non-null   float64
 11  quality               6497 non-null   int64  
 12  is_red                6497 non-null   int64  
dtypes: float64(11), int64(2)
memory usage: 660.0 KB

None

count mean std min 25% 50% 75% max

fixed
acidity

6497.0 7.215307 1.296434 3.80000 6.40000 7.00000 7.70000 15.90000

volatile
acidity

6497.0 0.339666 0.164636 0.08000 0.23000 0.29000 0.40000 1.58000

citric
acid

6497.0 0.318633 0.145318 0.00000 0.25000 0.31000 0.39000 1.66000

residual
sugar

6497.0 5.443235 4.757804 0.60000 1.80000 3.00000 8.10000 65.80000

chlo)
rides

6497.0 0.056034 0.035034 0.00900 0.03800 0.04700 0.06500 0.61100

free
sulfur
dioxide

6497.0 30.525319 17.749400 1.00000 17.00000 29.00000 41.00000 289.00000

total
sulfur
dioxide

6497.0 115.74457456.521855 6.00000 77.00000 118.00000 156.00000 440.00000

density 6497.0 0.994697 0.002999 0.98711 0.99234 0.99489 0.99699 1.03898
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count mean std min 25% 50% 75% max

pH 6497.0 3.218501 0.160787 2.72000 3.11000 3.21000 3.32000 4.01000

sul)
phates

6497.0 0.531268 0.148806 0.22000 0.43000 0.51000 0.60000 2.00000

alcohol 6497.0 10.491801 1.192712 8.00000 9.50000 10.30000 11.30000 14.90000

quality 6497.0 5.818378 0.873255 3.00000 5.00000 6.00000 6.00000 9.00000

is_red 6497.0 0.246114 0.430779 0.00000 0.00000 0.00000 0.00000 1.00000

fixed acidity           0
volatile acidity        0
citric acid             0
residual sugar          0
chlorides               0
free sulfur dioxide     0
total sulfur dioxide    0
density                 0
pH                      0
sulphates               0
alcohol                 0
quality                 0
is_red                  0
dtype: int64

Below, we made some graphs to better understand the data:

# Create a subtable with quality levels and number of rows
quality_counts = wdata['quality'].value_counts().sort_index()

# Creates a bar chart that plots the total for each quality level
plt.figure(figsize=(8, 6))
sns.barplot(x=quality_counts.index, y=quality_counts.values,
palette='viridis')
plt.title('Distribution of Wine Quality Scores')
plt.xlabel('Quality Score')
plt.ylabel('Number of Wines')
plt.xticks(rotation=0)
plt.tight_layout()
plt.show()

C:\Users\A02332124\AppData\Local\Temp\ipykernel_24000\2882911673.py:6:
FutureWarning: 

Passing `palette` without assigning `hue` is deprecated and will be removed in
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v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same
effect.

  sns.barplot(x=quality_counts.index, y=quality_counts.values,
palette='viridis')

This bar chart shows the distribution of our y)variable, quality. We can see it has a roughly normal
distribution, with the majority of quality scores being around 5 and 6. We also see that there are
no scores for 1, 2, or 10, and very few scores for 3 and 9. Since we are wanting to create a wine in
the 9)10 range, we will have to use the trends we see in lower values (particularly levels 5)8) to
make our prediction.

Next, we compare red and white wines on key chemical attributes to inform modeling.

# Calculate averages for each ingredient grouped by is_red
mean_data = wdata.groupby('is_red')[[
    'residual sugar', 'fixed acidity', 'volatile acidity',
    'citric acid', 'chlorides',
    'free sulfur dioxide',
    'sulphates'
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]].mean().reset_index()

# Melt into long format for seaborn
mean_data_melted = mean_data.melt(id_vars='is_red',
                                  var_name='attribute',
                                  value_name='mean_value')

# Change 0s and 1s to White and Red
mean_data_melted['is_red'] = mean_data_melted['is_red'].map({0: 'White', 1:
'Red'})

# Plot averages grouped by wine color
plt.figure(figsize=(12, 6))
sns.barplot(x='attribute', y='mean_value', hue='is_red',
data=mean_data_melted)
plt.title('Wine Attribute Averages by Wine Type')
plt.xlabel('Wine Attribute')
plt.ylabel('Average Value of Attribute (g/L)')
plt.xticks(rotation=45, ha='right')
plt.legend(title='Is Red')
plt.tight_layout()
plt.show()

This analysis highlights higher sulfur dioxide and sugar in white wines, while red wines feature
higher acidity and sulphates.

To identify which chemical attributes are most strongly associated with wine quality, we examine
how average attribute levels change across different quality scores. This analysis reveals potential
predictive relationships and guides our feature selection process.
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# Quality Line Plot 1 - Average values above 1.0
# Group by quality and calculate the average of each attribute
quality_means = wdata.groupby('quality').mean()
quality_means = quality_means.drop(columns=['total sulfur dioxide', 'is_red',
'density', 'volatile acidity', 'citric acid', 'chlorides', 'sulphates'])
# Plot a line chart for each attribute
plt.figure(figsize=(12, 8))
for column in quality_means.columns:
    plt.plot(quality_means.index, quality_means[column], marker='o',
linestyle='-', label=column)
plt.title('Wine Attribute Averages by Wine Quality')
plt.xlabel('Quality Score')
plt.ylabel('Average Value of Attribute (g/L)')
plt.legend(title='Attribute', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.grid(True)
plt.tight_layout()
plt.show()

# Quality Line Plot 2 - Average values below 1.0
# Group by quality and calculate the average of each attribute
quality_means = wdata.groupby('quality').mean()
quality_means = quality_means.drop(columns=['total sulfur dioxide', 'is_red',
'free sulfur dioxide', 'density', 'volatile acidity', 'citric acid',
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'chlorides', 'sulphates'])
# Plot a line chart for each attribute
plt.figure(figsize=(12, 8))
for column in quality_means.columns:
    plt.plot(quality_means.index, quality_means[column], marker='o',
linestyle='-', label=column)
plt.title('Wine Attribute Averages by Wine Quality')
plt.xlabel('Quality Score')
plt.ylabel('Average Value of Attribute (g/L)')
plt.legend(title='Attribute', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.grid(True)
plt.tight_layout()
plt.show()

These line charts show the changes in the average level of each attribute for each quality level.
While some of the attributes show no consistent pattern, we see upward trends for alcohol and
citric acid, meaning that an increased amount of alcohol and citric acid is correlated with a higher
quality score. We also see downward trends for volatile acidity and chlorides, meaning that a
decreased amount of volatile acidity and chlorides is correlated with a higher quality score.

Data Preprocessing and Model Preperation
When it comes to limitations of the data, we had to cut several variables, as they had high levels
of correlations with other variables in our dataset. Our dataset also lacks information to further

8



predict more than just wine quality. To further this project, our next steps would include gathering
additional data about branding, pricing and demand in order for us to further predict wine viability
in the market. Some of our data is also skewed, which could violate assumptions. We will handle
these problem as we prepare to run our model.

We first use a heatmap plot to check for correlation between our variables. High correlations
between predictors can lead to unstable coefficient estimates and reduced model interpretability.

# Calculate the correlation matrix
corr_matrix = wdata.corr()

# Plot the heatmap
plt.figure(figsize=(12, 8))
import seaborn as sns
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt=".2f",
linewidths=.5)
plt.title("Correlation Matrix")
plt.show()
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From this correlation heatmap, we notice several concerning relationships that require attention.
Density shows strong relationships with multiple variables. PH relationships exhibit significant
correlations with acidity measures. Sulfur dioxide connections (free and total sulfure dioxide) are
highly correlated. Based on this analysis, we make our first data preprocessing decision:

#Remove density column
wdata_selected = wdata.drop('density', axis=1)
display(wdata_selected.head().T)

0 1 2 3 4

fixed acidity 7.400 7.800 7.800 11.200 7.400

volatile acidity 0.700 0.880 0.760 0.280 0.700

citric acid 0.000 0.000 0.040 0.560 0.000

residual sugar 1.900 2.600 2.300 1.900 1.900

chlorides 0.076 0.098 0.092 0.075 0.076

free sulfur dioxide 11.000 25.000 15.000 17.000 11.000

total sulfur dioxide 34.000 67.000 54.000 60.000 34.000

pH 3.510 3.200 3.260 3.160 3.510

sulphates 0.560 0.680 0.650 0.580 0.560

alcohol 9.400 9.800 9.800 9.800 9.400

quality 5.000 5.000 5.000 6.000 5.000

is_red 1.000 1.000 1.000 1.000 1.000

Linear regression models perform optimally when predictors follow approximately normal distri)
butions. We examine the distribution of each variable to identify those requiring transformation:

# Plot histograms for all numerical columns in wdata_selected
wdata_selected.hist(figsize=(15, 10))
plt.tight_layout()
plt.show()
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We can see several of our data points are not normally distributed. This breaks an assumption of
our model. We will now run some code to logarithmically transform the skewed variables so that
their distributions will look more normal:

# Identify right-skewed variables from the histograms
# Based on visual inspection of the histograms, variables like:
# residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide,
sulphates
# appear to be right-skewed.

# Create a copy of the selected data to apply transformations
wdata_t = wdata_selected.copy()

# Apply log transformation (np.log1p) to the identified skewed variables
skewed_vars = ['fixed acidity', 'volatile acidity', 'citric acid', 'residual
sugar', 'chlorides', 'free sulfur dioxide', 'total sulfur dioxide',
'sulphates']

for var in skewed_vars:
    # Add a small constant before log transformation if there are zero values,
    # or use np.log1p which is log(1+x) and handles zero values
    wdata_t[f"{var}_log"] = np.log1p(wdata_t[var])

# Replace variable name spaces with underscores
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wdata_t.columns = [col.replace(' ', '_') for col in wdata_t.columns]

print("Data after applying log transformation to skewed variables:")
display(wdata_t.head().T)

Data after applying log transformation to skewed variables:

0 1 2 3 4

fixed_acidity 7.400000 7.800000 7.800000 11.200000 7.400000

volatile_acidity 0.700000 0.880000 0.760000 0.280000 0.700000

citric_acid 0.000000 0.000000 0.040000 0.560000 0.000000

residual_sugar 1.900000 2.600000 2.300000 1.900000 1.900000

chlorides 0.076000 0.098000 0.092000 0.075000 0.076000

free_sulfur_dioxide 11.000000 25.000000 15.000000 17.000000 11.000000

total_sulfur_dioxide 34.000000 67.000000 54.000000 60.000000 34.000000

pH 3.510000 3.200000 3.260000 3.160000 3.510000

sulphates 0.560000 0.680000 0.650000 0.580000 0.560000

alcohol 9.400000 9.800000 9.800000 9.800000 9.400000

quality 5.000000 5.000000 5.000000 6.000000 5.000000

is_red 1.000000 1.000000 1.000000 1.000000 1.000000

fixed_acidity_log 2.128232 2.174752 2.174752 2.501436 2.128232

volatile_acidity_log 0.530628 0.631272 0.565314 0.246860 0.530628

citric_acid_log 0.000000 0.000000 0.039221 0.444686 0.000000

residual_sugar_log 1.064711 1.280934 1.193922 1.064711 1.064711

chlorides_log 0.073250 0.093490 0.088011 0.072321 0.073250

free_sulfur_dioxide_log 2.484907 3.258097 2.772589 2.890372 2.484907

total_sulfur_dioxide_log 3.555348 4.219508 4.007333 4.110874 3.555348

sulphates_log 0.444686 0.518794 0.500775 0.457425 0.444686

wdata_t.hist(figsize=(15, 10))
plt.tight_layout()
plt.show()
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We can see that the logarithmic transformations helped the variables become more normal,
although some of them still have some skew.

Statistical Modeling and Diagnostics
With our preprocessed data, we begin building our regression model. However, before finalizing
the model, we must identify and address potentially influential observations that could skew our
results.

# Define the independent variables (features) and the dependent variable
(target) using the transformed data
# Ensure the DataFrame used for the formula contains the 'quality' column
predictors1 = [
    'fixed_acidity_log', 'volatile_acidity_log', 'citric_acid_log',
'residual_sugar',
    'chlorides', 'free_sulfur_dioxide', 'total_sulfur_dioxide',
'sulphates_log',
    'alcohol', 'pH', 'is_red'
]

# Fit the OLS regression model using the wdata_t DataFrame which contains
'quality'
# Use backticks for column names that originally had spaces, although renaming
them is better.
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# Since we have renamed columns, we can use the renamed names directly.
formula = 'quality ~ ' + ' + '.join(predictors1)
fit1 = smf.ols(formula, data=wdata_t).fit()
wdata_t['residuals_01'] = fit1.resid
wdata_t['fittedvalues_01'] = fit1.fittedvalues
sm.graphics.influence_plot(fit1, criterion = 'dffits')
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We can see some strong leverage points towards the right side of the graph. Before removing
these, we will remove any multicollinear columns and check for influential points again.

We will now create partial regression plots. Partial regression plots help us understand the
relationship between each predictor and the response variable while controlling for all other
predictors. This analysis also reveals influential observations for individual variables.

#plotting a partioal regression plot
Nfig = plt.figure(figsize = (8,7))
# Get the actual names of the exogenous variables from the fitted model,
excluding the intercept
exog_names = [name for name in fit1.model.exog_names if name != 'Intercept']
sm.graphics.plot_partregress_grid(
fit1,
exog_idx = exog_names,
grid = (8, 2),
fig = Nfig
)
Nfig.tight_layout()
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Our partial regression plot also shows some influential points, particularly for residual sugar,
chlorides, and total sulfur dioxide. But the dispersion of points is linear for every plot, which
means our variables are all linear.

Next, we generate a plot of the residuals and fitted values to make sure our variance is constant:

#plotting residuals
(so.Plot(wdata_t, x = 'residuals_01', y = 'fittedvalues_01')
.add(so.Dot(alpha = 0.25))
.add(so.Line(), so.PolyFit())
)
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Our plot of residuals and fitted values shows a clouded shape, which means that our data is
homoschedastic and that our variance is constant.

Next, to check for normality, we created a Q)Q plot:

#creating a q-q plot
sm.qqplot(
wdata_t['residuals_01'],
line = '45',
fit = True
)
plt.title("Normal Q-Q")

Text(0.5, 1.0, 'Normal Q-Q')
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Our Q)Q plot also adheres to the line from −2 to 2 quantiles, although it goes below the diagnoal
line past −2 quantiles. This shows that our data is roughly normal.

Finally, to check for multicollinearity, we will compute the variance inflation factors for each
predictor. This will show us how much the value of each predictor is explained by another variable
in our selection.

#creating a table to check variance inflation factors
vif_data = wdata_t[predictors1].copy()

for col in vif_data.columns:
    if vif_data[col].dtype == 'bool':
        vif_data[col] = vif_data[col].astype(int)

vif = np.zeros(len(predictors1))
for i in range(0, len(predictors1)):
    vif[i] = variance_inflation_factor(vif_data, i)

vif_results = pd.DataFrame({
    'predictors': predictors1,
    'vif': vif
})

display(vif_results)

18



predictors vif

0 fixed_acidity_log 182.509123

1 volatile_acidity_log 15.722883

2 citric_acid_log 11.585575

3 residual_sugar 3.365820

4 chlorides 5.540018

5 free_sulfur_dioxide 8.725275

6 total_sulfur_dioxide 20.739984

7 sulphates_log 32.445210

8 alcohol 103.682970

9 pH 208.997486

10 is_red 5.885229

We clearly have some high variance inflation factors in our dataset. We will need to remove
some columns.

predictors2 = [
    'fixed_acidity_log', 'citric_acid_log', 'residual_sugar_log',
    'chlorides_log', 'free_sulfur_dioxide_log', 'sulphates_log', 'is_red'
]

formula = 'quality ~ ' + ' + '.join(predictors2)
fit2 = smf.ols(formula, data=wdata_t).fit()
wdata_t['residuals_02'] = fit2.resid
wdata_t['fittedvalues_02'] = fit2.fittedvalues

vif_data = wdata_t[predictors2].copy()

for col in vif_data.columns:
    if vif_data[col].dtype == 'bool':
        vif_data[col] = vif_data[col].astype(int)

vif = np.zeros(len(predictors2))
for i in range(0, len(predictors2)):
    vif[i] = variance_inflation_factor(vif_data, i)

vif_results = pd.DataFrame({
    'predictors': predictors2,
    'vif': vif
})

display(vif_results)
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predictors vif

0 fixed_acidity_log 62.844861

1 citric_acid_log 8.765243

2 residual_sugar_log 8.262965

3 chlorides_log 6.016120

4 free_sulfur_dioxide_log 34.254661

5 sulphates_log 29.577923

6 is_red 3.373731

We removed pH, alcohol, total sulfur dioxide, and volatile acidity. Now, the VIF scores are still
high for a few of the variables, but they are much lower than some of the high)ranking variables.
We chose to keep fixed_acidity_log, free_sulfur_dioxide_log, and sulphates_log because they are
important aspects of the wine that we want to include in our analysis, even if part of them is
explained by other variables.

We want to make sure that our model assumptions are still met after removing these columns, so
we will rerun our code for influence points, the partial regression plot, the map of residuals and
fitted values, and the Q)Q plot:

#graphing influence plots
sm.graphics.influence_plot(fit2, criterion = 'dffits')
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#once again graphing partial regression plots
fig = plt.figure(figsize = (8,7))
exog_names = [name for name in fit2.model.exog_names if name != 'Intercept']
sm.graphics.plot_partregress_grid(
fit2,
exog_idx = exog_names,
grid = (8, 2),
fig = fig
)
fig.tight_layout()
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#checking residuals again
wdata_t['residuals_02'] = fit2.resid
wdata_t['fittedvalues_02'] = fit2.fittedvalues

(so.Plot(wdata_t, x = 'residuals_02', y = 'fittedvalues_02')
.add(so.Dot(alpha = 0.25))
.add(so.Line(), so.PolyFit())
)
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#checking Q-Q plot again
sm.qqplot(
wdata_t['residuals_02'],
line = '45',
fit = True
)
plt.title("Normal Q-Q")

Text(0.5, 1.0, 'Normal Q-Q')
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After removing those columns, we can see that the effects of influential points, shown in our
influence plot and partial regression plot, are reduced. Our plot of residuals and fitted values
still maintains a clouded shape, and the Q)Q plot still follows the diagonal line, although the
logarithmic transform contribute to the wavy pattern.

Model Assumptions and Validation
We plan on using an Ordinary Least Squares (OLS) model to train and evaluate the data in order
to make predictions about the relationship between our predictor variables and wine quality.
Running an OLS model has a few assumptions that it makes about the data. These assumptions
come with running a model that uses linear regression. These assumptions are addressed in the
bullet points below:

Linear Regression Assumptions:

• Validity ) The most important variables for assessing wine quality are in our dataset. There
are things missing, like grape type, wine brand, and wine selling price. However, two of those
variables might have more of a placebo effect on quality rather than a realistic effect. Some of
the information grape type would capture can also be captured in wine color, as grape type
determines the possible colors while production finalizes the color.

• Representativeness ) The dataset comes from a Portuguese wine company and spans from 2004
to 2007. The data were collected and gathered for a research paper for a university in Portugal
and made public afterwards. There were no missing values in the dataset, so we can apply our
analyses without worrying about whether data was missing at random or not. We found five
points that skewed the data significantly, but their impact was lessened when we dropped some
of the columns they were skewing.
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• Linearity ) We made a partial regression plot of quality onto each variable, and all of the
relationships look linear, clustered around a general area. There are still some points that are far
from the mean, but performing logarithmic transformations on the variables made their effect
less severe.

• Independence ) There are no sequences or clusterization to this data. Each row represents a
different vihno verde wine.

• Constant Variance ) The plot of the residuals and the fitted values is in a clouded (circular)
shape, meaning that there is homoscedasticity of errors.

• Normality ) Our Q)Q plot follows the diagonal line until it gets past two quantiles on either
side. After performing log transformations on the variables, the Q)Q chart extends to further
quantiles in the Q)Q plot, and the distributions of individual variables appears more normal.

• Multicollinearity ) We knew that some columns were going to be coordinated, such as density,
alcohol, and pH. After doing a VIF analysis, we also dropped total sulfur dioxide (which is related
to free sulfur dioxide) and volatile acidity (related to fixed acidity and citric acid).

Model Training and Performance Evaluation
Now that we have met all our model assumptions, we can start to fit our data to the model. First,
we will split our dataset into two groups: one for training, and one for testing. We will fit the
model to the training dataset and then apply it to the testing dataset to avoid overfitting to our
testing data. While the OLS model is calculated using our training data, our mean squared error
is calculated using our testing data.

#spliting data on an 80-20 split
X = wdata_t.drop('quality', axis=1)
y = wdata_t['quality']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)

#dropping unused columns
X_train = X_train.drop(columns=[
    'volatile_acidity', 'total_sulfur_dioxide', 'pH',
    'alcohol', 'residuals_01', 'fittedvalues_01', 'residuals_02',
'fittedvalues_02', 'fixed_acidity', 'citric_acid', 'residual_sugar',
'chlorides', 'free_sulfur_dioxide',
    'sulphates'])

# Append quality back onto our training set for X
w_train = pd.concat([y_train.rename('quality'), X_train], axis=1)

w_train.head().T

1916 947 877 2927 6063

quality 5.000000 7.000000 6.000000 6.000000 5.000000
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1916 947 877 2927 6063

is_red 0.000000 1.000000 1.000000 0.000000 0.000000

fixed_acidity_log 2.028148 2.230014 2.163323 1.824549 2.028148

volatile_acidity_log 0.215111 0.246860 0.539413 0.314811 0.231112

citric_acid_log 0.300105 0.392042 0.009950 0.285179 0.444686

residual_sugar_log 2.163323 1.131402 1.131402 0.788457 2.797281

chlorides_log 0.030529 0.088926 0.062035 0.027615 0.051643

free_sulfur_dioxide_log 3.610918 1.945910 3.465736 2.639057 3.496508

total_sulfur_dioxide_log 4.912655 2.564949 3.784190 4.406719 4.955827

sulphates_log 0.314811 0.482426 0.451076 0.322083 0.398776

#doing a third fit
fit_03 = smf.ols(
'quality ~ ' + ' + '.join(predictors2),
data = wdata_t
).fit()

# Make predictions on the test data using fit_03
y_pred_03 = fit_03.predict(X_test)

# Calculate the Mean Squared Error (MSE)
mse_03 = mean_squared_error(y_test, y_pred_03)

print(f"Mean Squared Error (MSE) for fit_03: {mse_03}")

Mean Squared Error (MSE) for fit_03: 0.6712058375147787

#running a fourth fit
predictors3 = [
    'citric_acid_log', 'residual_sugar_log',
    'chlorides_log', 'free_sulfur_dioxide_log', 'sulphates_log', 'is_red'
]
fit_04 = smf.ols(
'quality ~ ' + ' + '.join(predictors3),
data = wdata_t
).fit()

# Make predictions on the test data using fit_03
y_pred_04 = fit_04.predict(X_test)
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# Calculate the Mean Squared Error (MSE)
mse_04 = mean_squared_error(y_test, y_pred_04)

print(f"Mean Squared Error (MSE) for fit_03: {mse_04}")

Mean Squared Error (MSE) for fit_03: 0.6773355840673311

We tried a few different combinations of variables in our linear regression model, but
fit_03 (with predictors ‘fixed_acidity_log’, ‘citric_acid_log’, ‘residual_sugar_log’, ‘chlorides_log’,
‘free_sulfur_dioxide_log’, ‘sulphates_log’, ‘is_red’) had the lowest mean squared error, so that is
the model we will use.

Final Model Results and Interpretation
import pandas as pd
import numpy as np

# Corrected function to calculate quality based on fit_03 coefficients
def calculate_quality(fixed_acidity_log, citric_acid_log, residual_sugar_log,
chlorides_log, free_sulfur_dioxide_log, sulphates_log, is_red):
  # Pull the coefficients from fit_03
  coefficients = fit_03.params

  # Calculate predicted quality using the coefficients and input values
  predicted_quality = (coefficients['Intercept'] +
                       coefficients['fixed_acidity_log'] * fixed_acidity_log +
                       coefficients['citric_acid_log'] * citric_acid_log +
                       coefficients['residual_sugar_log'] * residual_sugar_log
+
                       coefficients['chlorides_log'] * chlorides_log +
                       coefficients['free_sulfur_dioxide_log'] *
free_sulfur_dioxide_log +
                       coefficients['sulphates_log'] * sulphates_log +
                       coefficients['is_red'] * is_red)
  return predicted_quality

# Create a DataFrame with example input values (using original scale for
skewed variables)
# Replace these values with the theoretical values you want to test
theoretical_data_original_scale = pd.DataFrame({
    'fixed_acidity': [7.0, 5.0, 3.0],
    'citric_acid': [0.3, 0.5, 0.7],
    'residual_sugar': [2.0, 1.5, 1.0],
    'chlorides': [0.05, 0.03, 0.01],
    'free_sulfur_dioxide': [15.0, 20.0, 25.0],
    'sulphates': [0.5, 1.0, 1.5],
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    'is_red': [1, 1, 1] # 1 for red wine, 0 for white wine
})

# Apply log transformation to the relevant variables and update column names
theoretical_data_transformed = theoretical_data_original_scale.copy()
skewed_vars_fit03 = ['fixed_acidity', 'citric_acid', 'residual_sugar',
'chlorides', 'free_sulfur_dioxide', 'sulphates']

for var in skewed_vars_fit03:
    if var in theoretical_data_transformed.columns:
        theoretical_data_transformed[f"{var}_log"] =
np.log1p(theoretical_data_transformed[var])
        # Drop the original scale column if you only want the log-transformed
version
        # theoretical_data_transformed =
theoretical_data_transformed.drop(columns=[var])

# Now, use the transformed data with the calculate_quality function
predicted_qualities = theoretical_data_transformed.apply(
    lambda row: calculate_quality(
        fixed_acidity_log=row['fixed_acidity_log'] if 'fixed_acidity_log' in
row else row['fixed_acidity'], # Use log if exists, otherwise original
        citric_acid_log=row['citric_acid_log'] if 'citric_acid_log' in row
else row['citric_acid'],
        residual_sugar_log=row['residual_sugar_log'] if 'residual_sugar_log'
in row else row['residual_sugar'],
        chlorides_log=row['chlorides_log'] if 'chlorides_log' in row else
row['chlorides'],
        free_sulfur_dioxide_log=row['free_sulfur_dioxide_log'] if
'free_sulfur_dioxide_log' in row else row['free_sulfur_dioxide'],
        sulphates_log=row['sulphates_log'] if 'sulphates_log' in row else
row['sulphates'],
        is_red=row['is_red']
    ),
    axis=1
)

print("Predicted quality for theoretical data:")
display(predicted_qualities)

Predicted quality for theoretical data:

0    5.873863
1    6.722002
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2    7.525457
dtype: float64

Using our model, we made three wines with different qualities and tested what our model would
predict their quality to be. Following the trends seen in our model output, a higher level of
sulphates, free sulfur dioxide, and citric acid is associated with greater quality, while a lower level
of chlorides, residual sugar, and fixed acidity is associated with greater quality.

# Predictors used in fit_03:
predictors_fit_03 = [
    'fixed_acidity_log', 'citric_acid_log', 'residual_sugar_log',
    'chlorides_log', 'free_sulfur_dioxide_log', 'sulphates_log', 'is_red'
]

# Define the formula using the predictors from fit_03
formula_final = 'quality ~ ' + ' + '.join(predictors_fit_03)

# Fit the OLS regression model using the entire transformed dataset (wdata_t)
fit_final = smf.ols(formula_final, data=wdata_t).fit()

# Display the model summary
print(fit_final.summary())

                            OLS Regression Results                            
==============================================================================
Dep. Variable:                quality   R-squared:                       0.083
Model:                            OLS   Adj. R-squared:                  0.082
Method:                 Least Squares   F-statistic:                     83.79
Date:                Sat, 11 Oct 2025   Prob (F-statistic):          4.27e-117
Time:                        21:24:30   Log-Likelihood:                -8056.7
No. Observations:                6497   AIC:                         1.613e+04
Df Residuals:                    6489   BIC:                         1.618e+04
Df Model:                           7                                         
Covariance Type:            nonrobust                                         
===========================================================================================
                              coef    std err          t      P>|t|
[0.025      0.975]
-------------------------------------------------------------------------------------------
Intercept                   6.1830      0.204     30.375      0.000
5.784       6.582
fixed_acidity_log          -0.4989      0.094     -5.316      0.000
-0.683      -0.315
citric_acid_log             1.0186      0.113      9.050      0.000
0.798       1.239
residual_sugar_log         -0.0936      0.017     -5.512      0.000
-0.127      -0.060
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chlorides_log              -6.8755      0.410    -16.789      0.000
-7.678      -6.073
free_sulfur_dioxide_log     0.1089      0.020      5.460      0.000
0.070       0.148
sulphates_log               1.3207      0.134      9.855      0.000
1.058       1.583
is_red                      0.0619      0.040      1.537      0.124
-0.017       0.141
==============================================================================
Omnibus:                       54.716   Durbin-Watson:                   1.657
Prob(Omnibus):                  0.000   Jarque-Bera (JB):               62.126
Skew:                           0.174   Prob(JB):                     3.23e-14
Kurtosis:                       3.329   Cond. No.                         174.
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is
correctly specified.

Final Model Equation: Quality = 6.183 ) 0.499×fixed_acidity_log + 1.019×citric_acid_log
) 0.094×residual_sugar_log ) 6.876×chlorides_log + 0.109×free_sulfur_dioxide_log +
1.321×sulphates_log + 0.062×is_red

Confidence Intervals and Statistical Inference
#importing required library
import math

#capturing confidence intervals
frequentist_conf_int = fit_final.conf_int()

#formula for printing our the correct interpretations of the confidence
intervals
print("Frequentist interpretation of confidence intervals")
for index, row in frequentist_conf_int.iterrows():
  if index == 'Intercept':
    print(f"We are 95% confident that the {index} for our equation is between
{row[0]:.2f} and {row[1]:.2f}")
  elif index == 'is_red':

    print(f"We are 95% confident that the coefficient for {index} is between
{C1} and {C2}, in relation to white wine, holding all other variables fixed,
however this interval range crosses over zero and might not be statistically
significant.")

  else:
    C1 = row[0]
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    C2 = row[1]
    C1 = round(math.exp(C1),3)
    C2 = round(math.exp(C2),3)

    print(f"We are 95% confident that the coefficient for {index} is between
{C1} and {C2}, holding all other variables fixed.")

Frequentist interpretation of confidence intervals
We are 95% confident that the Intercept for our equation is between 5.78 and
6.58
We are 95% confident that the coefficient for fixed_acidity_log is between
0.505 and 0.73, holding all other variables fixed.
We are 95% confident that the coefficient for citric_acid_log is between 2.221
and 3.453, holding all other variables fixed.
We are 95% confident that the coefficient for residual_sugar_log is between
0.881 and 0.941, holding all other variables fixed.
We are 95% confident that the coefficient for chlorides_log is between 0.0 and
0.002, holding all other variables fixed.
We are 95% confident that the coefficient for free_sulfur_dioxide_log is
between 1.072 and 1.16, holding all other variables fixed.
We are 95% confident that the coefficient for sulphates_log is between 2.881
and 4.872, holding all other variables fixed.
We are 95% confident that the coefficient for is_red is between 2.881 and
4.872, in relation to white wine, holding all other variables fixed, however
this interval range crosses over zero and might not be statistically
significant.

From this report we can extract our confidence intervals. Here are the confidence intervals.

Frequentist interpretation of confidence intervals * We are 95% confident that the Intercept for
our equation is between 5.78 and 6.58, holding all other variables fixed.

• We are 95% confident that the coefficient for fixed_acidity is between 0.505 and 0.73, holding
all other variables fixed.

• We are 95% confident that the coefficient for citric_acid is between 2.221 and 3.453, holding all
other variables fixed.

• We are 95% confident that the coefficient for residual_sugar is between 0.881 and 0.941, holding
all other variables fixed.

• We are 95% confident that the coefficient for chlorides is between 0.0 and 0.002, holding all other
variables fixed.

• We are 95% confident that the coefficient for free_sulfur_dioxide is between 1.072 and 1.16,
holding all other variables fixed.
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• We are 95% confident that the coefficient for sulphates is between 2.881 and 4.872, holding all
other variables fixed.

• We are 95% confident that the coefficient for is_red is between −0.02 and 0.14, holding all other
variables fixed, in relation to white wine, however this interval range crosses over zero and
might not be statistically significant.

# Construct confidence interval data frame
df_01 = pl.DataFrame({
    'term': fit_final.conf_int().index.tolist(),
    'coef': fit_final.params.tolist(),
    'conf_low': fit_final.conf_int().loc[:, 0].tolist(),
    'conf_high': fit_final.conf_int().loc[:, 1].tolist()
})

# Plotting the confidence interval
df = df_01
plt.figure(figsize=(4, 4))
plt.errorbar(df['coef'], df['term'],
    xerr=[df['coef'] - df['conf_low'], df['conf_high'] - df['coef']],
    fmt='o',
    capsize=5,
    label='Estimates')
plt.axvline(0, color='red', linestyle='--', label='y=0')
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# Selecting just slopes
df_02 = df_01.filter(pl.col('term') != 'Intercept')
df_02 = df_02.filter(pl.col('term') != 'chlorides_log')

# Plotting the confidence interval
df = df_02
plt.figure(figsize=(4, 4))
plt.errorbar(df['coef'], df['term'],
    xerr=[df['coef'] - df['conf_low'], df['conf_high'] - df['coef']],
    fmt='o',
    capsize=5,
    label='Estimates')
plt.axvline(0, color='red', linestyle='--', label='y=0')

# Selecting just slopes
df_03 = df_01.filter(pl.col('term') == 'chlorides_log')

# Plotting the confidence interval
df = df_03
plt.figure(figsize=(4, 4))
plt.errorbar(df['coef'], df['term'],
    xerr=[df['coef'] - df['conf_low'], df['conf_high'] - df['coef']],
    fmt='o',
    capsize=5,
    label='Estimates')
plt.axvline(0, color='red', linestyle='--', label='y=0')
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These three graphs show our confidence intervals visually. Increased sulphates and citric acid are
associated with greater quality, while lower fixed acidity and chlorides are associated with lower
quality.

Optimal Wine Composition Predictions
Using our validated model, we explore different wine compositions to identify formulations that
maximize predicted quality scores.

# Create a DataFrame with new theoretical input values
# Remember to apply log transformations to the relevant variables if your
input is on the original scale
x_new = pd.DataFrame({
    'fixed_acidity_log': [6.0],
    'citric_acid_log': [1.23],
    'residual_sugar_log': [.6],
    'chlorides_log': [0.04],
    'free_sulfur_dioxide_log': [40.0],
    'sulphates_log': [2],
    'is_red': [1]
})

# Apply log transformation to relevant columns in x_new
skewed_vars_fit_final = ['fixed_acidity_log', 'citric_acid_log',
'residual_sugar_log', 'chlorides_log', 'free_sulfur_dioxide_log',
'sulphates_log']
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for var in skewed_vars_fit_final:
    if var in x_new.columns:
        x_new[var] = np.log1p(x_new[var])

# Predict the quality using the fit_final model
predicted_quality_new = fit_final.predict(x_new)

print("Predicted quality for the new theoretical data:")
display(predicted_quality_new)

# Get prediction intervals (confidence interval for the prediction of a single
new observation)
prediction_intervals =
fit_final.get_prediction(x_new).summary_frame(alpha=0.05)

print("\nPrediction intervals for the new theoretical data:")
display(prediction_intervals)

Predicted quality for the new theoretical data:

0    7.632697
dtype: float64

Prediction intervals for the new theoretical data:

mean mean_se mean_ci_lower mean_ci_upper obs_ci_lower obs_ci_upper

0 7.632697 0.113185 7.410817 7.854577 5.977491 9.287904

# Create a DataFrame with new theoretical input values
# Remember to apply log transformations to the relevant variables if your
input is on the original scale
x_new = pd.DataFrame({
    'fixed_acidity_log': [4.0],
    'citric_acid_log': [1.23],
    'residual_sugar_log': [.6],
    'chlorides_log': [0.01],
    'free_sulfur_dioxide_log': [140.0],
    'sulphates_log': [2],
    'is_red': [1]
})

# Apply log transformation to relevant columns in x_new
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skewed_vars_fit_final = ['fixed_acidity_log', 'citric_acid_log',
'residual_sugar_log', 'chlorides_log', 'free_sulfur_dioxide_log',
'sulphates_log']

for var in skewed_vars_fit_final:
    if var in x_new.columns:
        x_new[var] = np.log1p(x_new[var])

# Predict the quality using the fit_final model
predicted_quality_new = fit_final.predict(x_new)

print("Predicted quality for the new theoretical data:")
display(predicted_quality_new)

# Get prediction intervals (confidence interval for the prediction of a single
new observation)
prediction_intervals =
fit_final.get_prediction(x_new).summary_frame(alpha=0.05)

print("\nPrediction intervals for the new theoretical data:")
display(prediction_intervals)

Predicted quality for the new theoretical data:

0    8.136363
dtype: float64

Prediction intervals for the new theoretical data:

mean mean_se mean_ci_lower mean_ci_upper obs_ci_lower obs_ci_upper

0 8.136363 0.138071 7.865698 8.407028 6.473913 9.798813

Above we have some predictions using our loss function. The code above applies our quadratic
loss function and allows us to make predictions based on the variables inputted. We tried a bunch
of combinations using the minimum and maximum of each variable’s data points as constraints.
We left one previous example and our best prediction in the code, as most of it was just replacing
a variable with a new number and running the prediction again. The combination on the bottom
was the highest prediction for quality we achieved. This code’s prediction can be interpreted as:

We advise creating red wine with 4.0 g/L fixed acidity, 1.23 g/L citric acid, 0.6 g/L residual
sugar, 0.01 g/L chlorides, 140 mg/L free sulfur dioxide, and 2.0 g/L sulphates. This will give
a wine quality between 6.47 and 9.8.
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Conclusion and Recommendations
Overall, we found that fixed acidity, citric acid, chlorides, and sulphates have the greatest impact
on wine quality. These variables need to be properly monitored and controlled if wine quality is
to be improved.

We advise creating red wine with 4.0 g/L fixed acidity, 1.23 g/L citric acid, 0.6 g/L residual
sugar, 0.01 g/L chlorides, 140 mg/L free sulfur dioxide, and 2.0 g/L sulphates. This will give
a wine quality between 6.47 and 9.8.
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