Wine Quality Linear Regression Analysis

Executive Summary

This technical report presents a comprehensive analysis of wine quality factors for Vinhos Verdes,
a Portuguese wine company accounting for approximately 15% of all wine sold in Portugal.
Through statistical modeling and exploratory data analysis, we investigate how various chemical
and physical wine attributes affect overall quality ratings. Our predictive model, evaluated using
Mean Square Error (MSE), provides actionable insights for optimizing wine production parame-
ters with respect to quality. Upon completion of this report we found that, We advise creating red
wine with 4.0 g/L fixed acidity, 1.23 g/L citric acid, 0.6 g/L residual sugar, 0.01 g/L chlorides,
140 mg/L free sulfur dioxide, and 2.0 g/L sulphates. This will give a wine quality between
6.47 and 9.8.

Technical Report
We were tasked by Vinhos Verdes, a Portugal wine company that accounts for about 15% of all
wine sold in Portugal, to investigate the way different attributions inside of the wine affect the

wine’s quality. Our model will be evaluated using a quadratic loss function and more specifically
Mean Squared Error (MSE).

Exploratory Data Analysis
We started by importing necessary Python libraries to facilitate data analysis, manipulation, and
visualization.

#importing require modules for our data analysis
import os

import numpy as np

import polars as pl

import pandas as pd

import seaborn.objects as so

import matplotlib.pyplot as plt

import statsmodels.api as sm

import statsmodels.formula.api as smf

from statsmodels.stats.outliers influence import variance inflation_ factor
from sklearn.model selection import train test split
from sklearn.metrics import mean squared error
import seaborn as sns

#lLoad in our dataset
wdata = pd.read csv('Projectl data.csv')
wdata.head().T



0 1 2 3 4
fixed acidity 7.4000  7.8000  7.800 11.200  7.4000
volatile acidity 0.7000  0.8800 0.760  0.280  0.7000
citric acid 0.0000  0.0000  0.040  0.560  0.0000
residual sugar 1.9000  2.6000  2.300 1.900  1.9000
chlorides 0.0760  0.0980  0.092  0.075  0.0760
free sulfur dioxide = 11.0000 25.0000 15.000 17.000 11.0000
total sulfur dioxide 34.0000 67.0000 54.000 60.000 34.0000
density 0.9978  0.9968  0.997  0.998  0.9978
pH 35100  3.2000 3.260 3.160  3.5100
sulphates 0.5600  0.6800  0.650  0.580  0.5600
alcohol 9.4000  9.8000  9.800  9.800  9.4000
quality 5.0000  5.0000 5.000 6.000 5.0000
is_red 1.0000  1.0000  1.000 1.000  1.0000

The provided data has several variables all that are involved in the process of creating a high
quality wine. The data was created for the purpose of analyzing wine quality and has the variables
for an exploratory analysis on wine quality. Vinhos Verdes gave us data they collected from
2004-2007 on different wine quality. This data was collected by the official certification entity
(CVRVV), and measured via a computerized system (iLab). The data can be found at this link:

https://archive.ics.uci.edu/dataset/186/wine+quality.
The company and more information about this data can be found in these links:

https://www.vinhoverde.pt/pt/ https://www.sciencedirect.com/science/article/abs/pii/S01679236
09001377?via%3Dihub

The dataset features 13 variables representing wine samples and quality ratings.Each row sum-

marizes a wine’s chemical and physical profile.

Here, we checked variable types and missing values to help evaluate analysis viability and
modeling challenges.

#Understand variable types and check for missing values
display(wdata.info())
display(wdata.describe().T)

display(wdata.isnull().sum())



<class 'pandas.core.frame.DataFrame
RangeIndex: 6497 entries, 0 to 6496
Data columns (total 13 columns):

'>

#  Column Non-Null Count Dtype

0 fixed acidity 6497 non-null float64

1 volatile acidity 6497 non-null float64

2 citric acid 6497 non-null float64

3 residual sugar 6497 non-null float64

4 chlorides 6497 non-null float64

5 free sulfur dioxide 6497 non-null float64

6 total sulfur dioxide 6497 non-null float64

7 density 6497 non-null float64

8 pH 6497 non-null float64

9 sulphates 6497 non-null float64

10 alcohol 6497 non-null float64

11 quality 6497 non-null int64

12 is red 6497 non-null int64

dtypes: float64(11), int64(2)

memory usage: 660.0 KB

None

count mean std min 25% 50% 75% max

fixed 6497.0 7.215307 1.296434 3.80000 6.40000 7.00000  7.70000 15.90000
acidity
volatile  6497.0 0.339666 0.164636 0.08000 0.23000  0.29000  0.40000 1.58000
acidity
citric 6497.0 0.318633 0.145318 0.00000 0.25000 0.31000  0.39000 1.66000
acid
residual  6497.0 5.443235 4.757804 0.60000 1.80000 3.00000  8.10000 65.80000
sugar
chlo- 6497.0 0.056034 0.035034 0.00900 0.03800 0.04700  0.06500 0.61100
rides
free 6497.0 30.525319 17.749400 1.00000 17.00000 29.00000 41.00000 289.00000
sulfur
dioxide
total 6497.0 115.74457456.521855 6.00000 77.00000 118.00000 156.00000 440.00000
sulfur
dioxide
density  6497.0 0.994697 0.002999 0.98711 0.99234  0.99489  0.99699 1.03898



count mean std min 25% 50% 75% max
pH 6497.0 3.218501 0.160787 2.72000 3.11000  3.21000  3.32000  4.01000
sul- 6497.0 0.531268 0.148806 0.22000 0.43000  0.51000  0.60000  2.00000
phates
alcohol  6497.0 10.491801 1.192712 8.00000 9.50000 10.30000 11.30000 14.90000
quality 6497.0 5.818378 0.873255 3.00000 5.00000  6.00000  6.00000  9.00000
is_red 6497.0 0.246114 0.430779 0.00000 0.00000  0.00000  0.00000 1.00000

fixed acidity
volatile acidity
citric acid
residual sugar
chlorides

free sulfur dioxide
total sulfur dioxide
density

pH

sulphates

alcohol

quality

is red

dtype: int64

[clclNoNoNoNoNoNoNoNoNoNoNO)

Below, we made some graphs to better understand the data:

# Create a subtable with quality levels and number of rows

quality counts = wdata['quality'].value counts().sort index()

# Creates a bar chart that plots the total for each quality level

plt.figure(figsize=(8, 6))

sns.barplot(x=quality counts.index, y=quality counts.values,

palette='viridis")

plt.title('Distribution of Wine Quality Scores')
plt.xlabel('Quality Score')
plt.ylabel('Number of Wines')

plt.xticks(rotation=0)

plt.tight layout()
plt.show()

C:\Users\A02332124\AppData\Local\Temp\ipykernel 24000\2882911673.py:6:

FutureWarning:

Passing “palette’ without assigning “hue® is deprecated and will be removed in



v0.14.0. Assign the “x° variable to “hue® and set "legend=False’ for the same
effect.

sns.barplot(x=quality counts.index, y=quality counts.values,
palette='viridis')
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This bar chart shows the distribution of our y-variable, quality. We can see it has a roughly normal
distribution, with the majority of quality scores being around 5 and 6. We also see that there are
no scores for 1, 2, or 10, and very few scores for 3 and 9. Since we are wanting to create a wine in
the 9-10 range, we will have to use the trends we see in lower values (particularly levels 5-8) to
make our prediction.

Next, we compare red and white wines on key chemical attributes to inform modeling.
# Calculate averages for each ingredient grouped by is red

mean_data = wdata.groupby('is red')[[
'residual sugar', 'fixed acidity', 'volatile acidity',

'citric acid', 'chlorides',
'free sulfur dioxide',
'sulphates'



1]1.mean().reset index()

# Melt into long format for seaborn

mean_data melted = mean data.melt(id vars='is red',
var_name='attribute',
value name='mean value')

# Change 0s and 1s to White and Red
mean data melted['is red'] = mean data melted['is red'].map({0: 'White',6 1:
'Red'})

# Plot averages grouped by wine color
plt.figure(figsize=(12, 6))

sns.barplot(x="attribute', y='mean value', hue='is red"',
data=mean data melted)

plt.title('Wine Attribute Averages by Wine Type')
plt.xlabel('Wine Attribute')

plt.ylabel('Average Value of Attribute (g/L)"')
plt.xticks(rotation=45, ha='right')

plt.legend(title='Is Red')

plt.tight layout()

plt.show()
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This analysis highlights higher sulfur dioxide and sugar in white wines, while red wines feature
higher acidity and sulphates.

To identify which chemical attributes are most strongly associated with wine quality, we examine
how average attribute levels change across different quality scores. This analysis reveals potential
predictive relationships and guides our feature selection process.



# Quality Line Plot 1 - Average values above 1.0

# Group by quality and calculate the average of each attribute

quality means = wdata.groupby('quality').mean()

quality means = quality means.drop(columns=['total sulfur dioxide', 'is red',
‘density', 'volatile acidity', 'citric acid', ‘chlorides', 'sulphates'])
# Plot a line chart for each attribute
plt.figure(figsize=(12, 8))
for column in quality means.columns:

plt.plot(quality means.index, quality means[column], marker='o"',
linestyle='-"', label=column)
plt.title('Wine Attribute Averages by Wine Quality')
plt.xlabel('Quality Score')
plt.ylabel('Average Value of Attribute (g/L)")
plt.legend(title="Attribute', bbox to anchor=(1.05, 1), loc='upper left')

plt.grid(True)
plt.tight layout()
plt.show()
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# Quality Line Plot 2 - Average values below 1.0
# Group by quality and calculate the average of each attribute
quality means = wdata.groupby('quality').mean()
quality means = quality means.drop(columns=['total sulfur dioxide"',
'free sulfur dioxide', 'density', 'volatile acidity', 'citric acid',

Attribute
—o— fixed acidity
—0— residual sugar
—o— free sulfur dioxide
—— pH
—8— alcohol

'is red',



‘chlorides', 'sulphates'])
# Plot a line chart for each attribute
plt.figure(figsize=(12, 8))
for column in quality means.columns:

plt.plot(quality means.index, quality means[column], marker='o"',
linestyle="'-"', label=column)
plt.title('Wine Attribute Averages by Wine Quality')
plt.xlabel('Quality Score')
plt.ylabel('Average Value of Attribute (g/L)"')
plt.legend(title="'Attribute', bbox to anchor=(1.05, 1), loc='upper left')
plt.grid(True)
plt.tight layout()

plt.show()
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These line charts show the changes in the average level of each attribute for each quality level.
While some of the attributes show no consistent pattern, we see upward trends for alcohol and
citric acid, meaning that an increased amount of alcohol and citric acid is correlated with a higher
quality score. We also see downward trends for volatile acidity and chlorides, meaning that a
decreased amount of volatile acidity and chlorides is correlated with a higher quality score.

Data Preprocessing and Model Preperation
When it comes to limitations of the data, we had to cut several variables, as they had high levels
of correlations with other variables in our dataset. Our dataset also lacks information to further



predict more than just wine quality. To further this project, our next steps would include gathering
additional data about branding, pricing and demand in order for us to further predict wine viability
in the market. Some of our data is also skewed, which could violate assumptions. We will handle
these problem as we prepare to run our model.

We first use a heatmap plot to check for correlation between our variables. High correlations
between predictors can lead to unstable coeflicient estimates and reduced model interpretability.

# Calculate the correlation matrix
corr_matrix = wdata.corr()

# Plot the heatmap

plt.figure(figsize=(12, 8))

import seaborn as sns

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt=".2f",
linewidths=.5)

plt.title("Correlation Matrix")

plt.show()
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From this correlation heatmap, we notice several concerning relationships that require attention.
Density shows strong relationships with multiple variables. PH relationships exhibit significant
correlations with acidity measures. Sulfur dioxide connections (free and total sulfure dioxide) are
highly correlated. Based on this analysis, we make our first data preprocessing decision:

#Remove density column
wdata selected = wdata.drop('density', axis=1)
display(wdata selected.head().T)

0 1 2 3 4
fixed acidity 7400 7.800 7.800  11.200 7.400
volatile acidity 0.700  0.880 0.760  0.280  0.700
citric acid 0.000  0.000 0.040 0.560  0.000
residual sugar 1.900 2.600 2.300 1.900  1.900
chlorides 0.076  0.098  0.092 0.075  0.076

free sulfur dioxide 11.000 25.000 15.000 17.000 11.000
total sulfur dioxide 34.000 67.000 54.000 60.000 34.000

pH 3,510 3.200 3.260 3.160  3.510
sulphates 0.560  0.680  0.650 0.580  0.560
alcohol 9.400 9.800 9.800 9.800  9.400
quality 5.000 5.000 5.000 6.000 5.000
is_red 1.000 1.000 1.000 1.000 1.000

Linear regression models perform optimally when predictors follow approximately normal distri-
butions. We examine the distribution of each variable to identify those requiring transformation:

# Plot histograms for all numerical columns in wdata selected
wdata selected.hist(figsize=(15, 10))

plt.tight layout()

plt.show()

10
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We can see several of our data points are not normally distributed. This breaks an assumption of
our model. We will now run some code to logarithmically transform the skewed variables so that
their distributions will look more normal:

# Identify right-skewed variables from the histograms

# Based on visual inspection of the histograms, variables like:

# residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide,
sulphates

# appear to be right-skewed.

# Create a copy of the selected data to apply transformations
wdata t = wdata selected.copy()

# Apply log transformation (np.loglp) to the identified skewed variables
skewed vars = ['fixed acidity', 'volatile acidity', 'citric acid', 'residual
sugar', 'chlorides', 'free sulfur dioxide', 'total sulfur dioxide',
'sulphates']

for var in skewed vars:
# Add a small constant before log transformation if there are zero values,
# or use np.loglp which is log(1l+x) and handles zero values
wdata t[f"{var} log"] = np.loglp(wdata t[var])

# Replace variable name spaces with underscores

11



wdata t.columns =

[col.replace("'

, ' ') for col in wdata t.columns]

print("Data after applying log transformation to skewed variables:")
display(wdata_t.head().T)

Data after applying log transformation to skewed variables:

0 1 2 3 4
fixed_acidity 7.400000  7.800000  7.800000 11.200000 7.400000
volatile_acidity 0.700000  0.880000  0.760000  0.280000  0.700000
citric_acid 0.000000  0.000000  0.040000  0.560000  0.000000
residual_sugar 1.900000  2.600000  2.300000 1.900000 1.900000
chlorides 0.076000  0.098000  0.092000  0.075000  0.076000
free_sulfur_dioxide 11.000000 25.000000 15.000000 17.000000 11.000000
total_sulfur_dioxide 34.000000 67.000000 54.000000 60.000000 34.000000
pH 3.510000  3.200000  3.260000  3.160000  3.510000
sulphates 0.560000  0.680000  0.650000  0.580000  0.560000
alcohol 9.400000  9.800000  9.800000  9.800000  9.400000
quality 5.000000  5.000000  5.000000  6.000000  5.000000
is_red 1.000000 1.000000 1.000000 1.000000 1.000000
fixed_acidity_log 2.128232  2.174752  2.174752  2.501436  2.128232
volatile_acidity_log 0.530628  0.631272  0.565314  0.246860  0.530628
citric_acid_log 0.000000  0.000000  0.039221 0.444686  0.000000
residual_sugar_log 1.064711 1.280934  1.193922 1.064711 1.064711
chlorides_log 0.073250  0.093490  0.088011 0.072321 0.073250
free_sulfur_dioxide_log  2.484907  3.258097  2.772589  2.890372  2.484907
total_sulfur_dioxide_log 3.555348  4.219508  4.007333  4.110874  3.555348
sulphates_log 0.444686  0.518794  0.500775  0.457425  0.444686

wdata t.hist(figsize=(15, 10))

plt.tight layout()

plt.show()

12
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We can see that the logarithmic transformations helped the variables become more normal,

4000 +

although some of them still have some skew.

Statistical Modeling and Diagnostics

With our preprocessed data, we begin building our regression model. However, before finalizing
the model, we must identify and address potentially influential observations that could skew our
results.

# Define the independent variables (features) and the dependent variable
(target) using the transformed data
# Ensure the DataFrame used for the formula contains the 'quality' column
predictorsl = [

'fixed acidity log', 'volatile acidity log', 'citric_acid log',
‘residual sugar',

‘chlorides', 'free sulfur dioxide', 'total sulfur dioxide',
'sulphates log',

‘alcohol', 'pH', 'is red'

# Fit the OLS regression model using the wdata t DataFrame which contains
"quality'

# Use backticks for column names that originally had spaces, although renaming
them is better.

13



# Since we have renamed columns, we can use the renamed names directly.
formula = 'quality ~ ' + ' + '.join(predictorsl)

fitl = smf.ols(formula, data=wdata t).fit()

wdata t['residuals 01'] = fitl.resid

wdata t['fittedvalues 01'] = fitl.fittedvalues

sm.graphics.influence plot(fitl, criterion = 'dffits')
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We can see some strong leverage points towards the right side of the graph. Before removing
these, we will remove any multicollinear columns and check for influential points again.

We will now create partial regression plots. Partial regression plots help us understand the
relationship between each predictor and the response variable while controlling for all other
predictors. This analysis also reveals influential observations for individual variables.

#plotting a partioal regression plot

Nfig = plt.figure(figsize = (8,7))

# Get the actual names of the exogenous variables from the fitted model,
excluding the intercept

exog _names = [name for name in fitl.model.exog names if name != 'Intercept']
sm.graphics.plot partregress grid(

fitl,

exog_idx = exog_names,

grid = (8, 2),

fig = Nfig

)
Nfig.tight layout()
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Partial Regrgssion Plot
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Our partial regression plot also shows some influential points, particularly for residual sugar,
chlorides, and total sulfur dioxide. But the dispersion of points is linear for every plot, which
means our variables are all linear.

Next, we generate a plot of the residuals and fitted values to make sure our variance is constant:

#plotting residuals

(so.Plot(wdata t, x = 'residuals 01', y = 'fittedvalues 01')
.add(so.Dot(alpha = 0.25))

.add(so.Line(), so.PolyFit())

)
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Our plot of residuals and fitted values shows a clouded shape, which means that our data is
homoschedastic and that our variance is constant.

Next, to check for normality, we created a Q-Q plot:

#creating a q-q plot
sm.qgplot(

wdata t['residuals 01'],
line = '45"',

fit = True

)

plt.title("Normal Q-Q")

Text (0.5, 1.0, 'Normal Q-Q')
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Normal Q-Q
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Our Q-Q plot also adheres to the line from -2 to 2 quantiles, although it goes below the diagnoal
line past -2 quantiles. This shows that our data is roughly normal.

Finally, to check for multicollinearity, we will compute the variance inflation factors for each
predictor. This will show us how much the value of each predictor is explained by another variable
in our selection.

#creating a table to check variance inflation factors
vif data = wdata t[predictorsl].copy()

for col in vif data.columns:
if vif data[col].dtype == 'bool':
vif data[col] = vif data[col].astype(int)

vif = np.zeros(len(predictorsl))
for i in range(0, len(predictorsl)):
vif[i] = variance inflation factor(vif data, 1i)

vif results = pd.DataFrame({
'predictors': predictorsl,
'vif': vif

})

display(vif results)
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predictors vif
0 fixed_acidity_log 182.509123
1 volatile_acidity_log  15.722883
2 citric_acid_log 11.585575
3 residual_sugar 3.365820
4 chlorides 5.540018
5  free sulfur dioxide 8.725275
6  total_sulfur dioxide 20.739984
7  sulphates_log 32.445210
8  alcohol 103.682970
9 pH 208.997486
10 is_red 5.885229

We clearly have some high variance inflation factors in our dataset. We will need to remove

some columns.

predictors2 = [

]

formula =

'fixed acidity log',

‘chlorides log',

‘quality ~ ' + ' + '.join(predictors2)

'citric_acid log',
'free sulfur_dioxide log',

'residual sugar log',
‘sulphates log',

fit2 = smf.ols(formula, data=wdata t).fit()
wdata t['residuals 02'] = fit2.resid
wdata t['fittedvalues 02'] = fit2.fittedvalues

vif data = wdata_t[predictors2].copy()

for col in vif data.columns:
if vif data[col].dtype == 'bool':
vif data[col] = vif data[col].astype(int)

vif = np.zeros(len(predictors2))
for 1 in range(0, len(predictors2)):
vif[i] = variance inflation factor(vif data, 1i)

vif results = pd.DataFrame({
'predictors': predictors2,
'vif': vif

})

display(vif results)
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predictors vif

2
3
4
5
6

We removed pH, alcohol, total sulfur dioxide, and volatile acidity. Now, the VIF scores are still
high for a few of the variables, but they are much lower than some of the high-ranking variables.
We chose to keep fixed_acidity_log, free_sulfur_dioxide_log, and sulphates_log because they are
important aspects of the wine that we want to include in our analysis, even if part of them is

fixed_acidity_log 62.844861
citric_acid_log 8.765243
residual_sugar_log 8.262965
chlorides_log 6.016120

free_sulfur_dioxide_log 34.254661
sulphates_log 29.577923
is_red 3.373731

explained by other variables.

We want to make sure that our model assumptions are still met after removing these columns, so
we will rerun our code for influence points, the partial regression plot, the map of residuals and

fitted values, and the Q-Q plot:

#graphing influence plots

sm.graphics.influence plot(fit2, criterion

Studentized Residuals

'dffits"')

258

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Leverage
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Studentized Residuals
| | | |

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Leverage

#once again graphing partial regression plots
fig = plt.figure(figsize = (8,7))

exog_names = [name for name in fit2.model.exog names if name != 'Intercept']
sm.graphics.plot partregress grid(

fit2,

exog_idx = exog_names,

grid = (8, 2),

fig = fig

)
fig.tight layout()
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Partial Regregssion Plot
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#checking residuals again
wdata t['residuals 02'] = fit2.resid
wdata t['fittedvalues 02'] = fit2.fittedvalues

(so.Plot(wdata t, x = 'residuals 02', y = 'fittedvalues 02')
.add(so.Dot(alpha = 0.25))

.add(so.Line(), so.PolyFit())

)
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#checking Q-Q plot again
sm.qgplot(

wdata t['residuals 02'],
line = '45",

fit = True

)

plt.title("Normal Q-Q")

Text (0.5, 1.0, 'Normal Q-Q')
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After removing those columns, we can see that the effects of influential points, shown in our
influence plot and partial regression plot, are reduced. Our plot of residuals and fitted values
still maintains a clouded shape, and the Q-Q plot still follows the diagonal line, although the
logarithmic transform contribute to the wavy pattern.

Model Assumptions and Validation

We plan on using an Ordinary Least Squares (OLS) model to train and evaluate the data in order
to make predictions about the relationship between our predictor variables and wine quality.
Running an OLS model has a few assumptions that it makes about the data. These assumptions
come with running a model that uses linear regression. These assumptions are addressed in the
bullet points below:

Linear Regression Assumptions:

« Validity - The most important variables for assessing wine quality are in our dataset. There
are things missing, like grape type, wine brand, and wine selling price. However, two of those
variables might have more of a placebo effect on quality rather than a realistic effect. Some of
the information grape type would capture can also be captured in wine color, as grape type
determines the possible colors while production finalizes the color.

+ Representativeness - The dataset comes from a Portuguese wine company and spans from 2004
to 2007. The data were collected and gathered for a research paper for a university in Portugal
and made public afterwards. There were no missing values in the dataset, so we can apply our
analyses without worrying about whether data was missing at random or not. We found five
points that skewed the data significantly, but their impact was lessened when we dropped some
of the columns they were skewing.
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« Linearity - We made a partial regression plot of quality onto each variable, and all of the
relationships look linear, clustered around a general area. There are still some points that are far
from the mean, but performing logarithmic transformations on the variables made their effect
less severe.

+ Independence - There are no sequences or clusterization to this data. Each row represents a
different vihno verde wine.

« Constant Variance - The plot of the residuals and the fitted values is in a clouded (circular)
shape, meaning that there is homoscedasticity of errors.

« Normality - Our Q-Q plot follows the diagonal line until it gets past two quantiles on either
side. After performing log transformations on the variables, the Q-Q chart extends to further
quantiles in the Q-Q plot, and the distributions of individual variables appears more normal.

+ Multicollinearity - We knew that some columns were going to be coordinated, such as density,
alcohol, and pH. After doing a VIF analysis, we also dropped total sulfur dioxide (which is related
to free sulfur dioxide) and volatile acidity (related to fixed acidity and citric acid).

Model Training and Performance Evaluation

Now that we have met all our model assumptions, we can start to fit our data to the model. First,
we will split our dataset into two groups: one for training, and one for testing. We will fit the
model to the training dataset and then apply it to the testing dataset to avoid overfitting to our
testing data. While the OLS model is calculated using our training data, our mean squared error
is calculated using our testing data.

#spliting data on an 80-20 split
X = wdata t.drop('quality', axis=1)
y = wdata t['quality']

X train, X test, y train, y test = train test split(X, y, test size=0.2,
random_state=42)

#dropping unused columns
X train = X train.drop(columns=[

‘volatile acidity', 'total sulfur dioxide', 'pH',
'alcohol', 'residuals 01', 'fittedvalues 01', 'residuals 02',
'fittedvalues 02', 'fixed acidity', 'citric acid', 'residual sugar',

‘chlorides', 'free sulfur dioxide',
'sulphates'])

# Append quality back onto our training set for X
w_train = pd.concat([y_train.rename('quality'), X train], axis=1)

w_train.head().T

1916 947 877 2927 6063

quality 5.000000 7.000000 6.000000 6.000000 5.000000
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1916 947 877 2927 6063
is_red 0.000000 1.000000 1.000000 0.000000 0.000000
fixed_acidity_log 2.028148 2.230014 2.163323 1.824549 2.028148
volatile_acidity_log 0.215111 0.246860 0.539413 0.314811 0.231112
citric_acid_log 0.300105 0.392042 0.009950 0.285179 0.444686
residual_sugar_log 2.163323 1.131402 1.131402 0.788457 2.797281
chlorides_log 0.030529 0.088926 0.062035 0.027615 0.051643
free_sulfur_dioxide_log  3.610918 1.945910 3.465736 2.639057 3.496508
total_sulfur_dioxide_log 4.912655 2.564949 3.784190 4.406719 4.955827
sulphates_log 0.314811 0.482426 0.451076 0.322083 0.398776
#doing a third fit
fit 03 = smf.ols(
'quality ~ ' + ' + '.join(predictors2),

data = wdata t
). fit()

# Make predictions on the test data using fit 03
y pred 03 = fit 03.predict(X test)

# Calculate the Mean Squared Error (MSE)
mse 03 = mean squared error(y test, y pred 03)

print(f"Mean Squared Error (MSE) for fit 03: {mse 03}")

Mean Squared Error (MSE) for fit 03: 0.6712058375147787

#running a fourth fit
predictors3 = [

‘citric_acid log', 'residual sugar log',

‘chlorides log', 'free sulfur dioxide log',

1
fit 04 = smf.ols(

'quality ~ ' + ' + '.join(predictors3),

data = wdata t
). fit()

# Make predictions on the test data using fit 03
y pred 04 = fit 04.predict(X test)
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# Calculate the Mean Squared Error (MSE)
mse 04 = mean squared error(y test, y pred 04)

print(f"Mean Squared Error (MSE) for fit 03: {mse 04}")

Mean Squared Error (MSE) for fit 03: 0.6773355840673311

We tried a few different combinations of variables in our linear regression model, but
fit_03 (with predictors ‘fixed_acidity_log’, ‘citric_acid_log’, ‘residual_sugar_log’, ‘chlorides_log’,
‘free_sulfur_dioxide_log’, ‘sulphates_log’, ‘is_red’) had the lowest mean squared error, so that is
the model we will use.

Final Model Results and Interpretation

import pandas as pd
import numpy as np

# Corrected function to calculate quality based on fit 03 coefficients
def calculate quality(fixed acidity log, citric_acid log, residual sugar log,
chlorides log, free sulfur dioxide log, sulphates log, is red):

# Pull the coefficients from fit 03

coefficients = fit 03.params

# Calculate predicted quality using the coefficients and input values

predicted quality = (coefficients['Intercept'] +
coefficients|['fixed acidity log'] * fixed acidity log +
coefficients['citric acid log'] * citric_acid log +
coefficients|['residual sugar log'] * residual sugar log

coefficients['chlorides log'] * chlorides log +
coefficients['free sulfur dioxide log'] *
free sulfur _dioxide log +
coefficients['sulphates log'] * sulphates log +
coefficients['is red'] * is red)
return predicted quality

# Create a DataFrame with example input values (using original scale for
skewed variables)
# Replace these values with the theoretical values you want to test
theoretical data original scale = pd.DataFrame({

'fixed acidity': [7.0, 5.0, 3.0],

‘citric_acid': [0.3, 0.5, 0.7],

‘residual sugar': [2.0, 1.5, 1.0],

‘chlorides': [0.05, 0.03, 0.01],

'free sulfur dioxide': [15.0, 20.0, 25.0],

'sulphates': [0.5, 1.0, 1.5],
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'is red': [1, 1, 1] # 1 for red wine, 0 for white wine

})

# Apply log transformation to the relevant variables and update column names
theoretical data transformed = theoretical data original scale.copy()
skewed vars fit03 = ['fixed acidity', 'citric acid', 'residual sugar',
‘chlorides', 'free sulfur dioxide', 'sulphates']

for var in skewed vars fit03:
if var in theoretical data transformed.columns:

theoretical data transformed[f"{var} log"] =
np.loglp(theoretical data transformed[var])

# Drop the original scale column if you only want the log-transformed
version

# theoretical data transformed =
theoretical data transformed.drop(columns=[var])

# Now, use the transformed data with the calculate quality function
predicted qualities = theoretical data transformed.apply(
lambda row: calculate quality(
fixed acidity log=row['fixed acidity log'] if 'fixed acidity log' in
row else row['fixed acidity'], # Use log if exists, otherwise original
citric_acid log=row['citric_acid log'] if 'citric_acid log' in row
else row['citric acid'],
residual sugar log=row['residual sugar log'] if 'residual sugar log'
in row else row['residual sugar'l],
chlorides log=row['chlorides log'] if 'chlorides log' in row else
row['chlorides'],
free sulfur dioxide log=row['free sulfur dioxide log'] if
'free_sulfur dioxide log' in row else row['free sulfur dioxide'],
sulphates log=row|['sulphates log'] if 'sulphates log' in row else
row[ 'sulphates'],
is red=row['is red']
),
axis=1

print("Predicted quality for theoretical data:")
display(predicted qualities)

Predicted quality for theoretical data:

0 5.873863
1 6.722002
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2 7.525457
dtype: float64

Using our model, we made three wines with different qualities and tested what our model would
predict their quality to be. Following the trends seen in our model output, a higher level of
sulphates, free sulfur dioxide, and citric acid is associated with greater quality, while a lower level
of chlorides, residual sugar, and fixed acidity is associated with greater quality.

# Predictors used in fit 03:

predictors fit 03 = [
'fixed acidity log', 'citric _acid log', 'residual sugar log',
‘chlorides log', 'free sulfur dioxide log', 'sulphates log', 'is red'

# Define the formula using the predictors from fit 03
formula final = 'quality ~ ' + ' + '.join(predictors fit 03)

# Fit the OLS regression model using the entire transformed dataset (wdata t)
fit final = smf.ols(formula final, data=wdata t).fit()

# Display the model summary
print(fit final.summary())

OLS Regression Results

Dep. Variable: quality R-squared: 0.083
Model: OLS Adj. R-squared: 0.082
Method: Least Squares F-statistic: 83.79
Date: Sat, 11 Oct 2025 Prob (F-statistic): 4.27e-117
Time: 21:24:30 Log-Likelihood: -8056.7
No. Observations: 6497 AIC: 1.613e+04
Df Residuals: 6489 BIC: 1.618e+04
Df Model: 7
Covariance Type: nonrobust

coef std err t P>|t|
[0.025 0.975]
Intercept 6.1830 0.204 30.375 0.000
5.784 6.582
fixed acidity log -0.4989 0.094 -5.316 0.000
-0.683 -0.315
citric_acid log 1.0186 0.113 9.050 0.000
0.798 1.239
residual sugar log -0.0936 0.017 -5.512 0.000
-0.127 -0.060
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chlorides log -6.8755 0.410 -16.789 0.000
-7.678 -6.073

free sulfur dioxide log 0.1089 0.020 5.460 0.000

0.070 0.148

sulphates log 1.3207 0.134 9.855 0.000

1.058 1.583

is red 0.0619 0.040 1.537 0.124

-0.017 0.141

Omnibus: 54.716 Durbin-Watson: 1.657
Prob (Omnibus) : 0.000 Jarque-Bera (JB): 62.126
Skew: 0.174 Prob(JB): 3.23e-14
Kurtosis: 3.329 Cond. No. 174.
Notes:

[1] Standard Errors assume that the covariance matrix of the errors is
correctly specified.

Final Model Equation: Quality = 6.183 - 0.499xfixed_acidity_log + 1.019xcitric_acid_log
- 0.094xresidual_sugar_log - 6.876xchlorides_log + 0.109xfree_sulfur_dioxide_log +
1.321xsulphates_log + 0.062xis_red

Confidence Intervals and Statistical Inference

#importing required library
import math

#capturing confidence intervals
frequentist conf int = fit final.conf int()

#formula for printing our the correct interpretations of the confidence
intervals
print("Frequentist interpretation of confidence intervals")
for index, row in frequentist conf int.iterrows():

if index == 'Intercept':

print(f"We are 95% confident that the {index} for our equation is between

{row[0]:.2f} and {row[1]:.2f}")

elif index == 'is red':

print(f"We are 95% confident that the coefficient for {index} is between
{C1} and {C2}, in relation to white wine, holding all other variables fixed,
however this interval range crosses over zero and might not be statistically
significant.")

else:
Cl = row[0]
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C2 = row[1]
Cl = round(math.exp(Cl),3)
C2 = round(math.exp(C2),3)

print(f"We are 95% confident that the coefficient for {index} is between
{C1} and {C2}, holding all other variables fixed.")

Frequentist interpretation of confidence intervals

We are 95% confident that the Intercept for our equation is between 5.78 and
6.58

We are 95% confident that the coefficient for fixed acidity log is between
0.505 and 0.73, holding all other variables fixed.

We are 95% confident that the coefficient for citric acid log is between 2.221
and 3.453, holding all other variables fixed.

We are 95% confident that the coefficient for residual sugar log is between
0.881 and 0.941, holding all other variables fixed.

We are 95% confident that the coefficient for chlorides log is between 0.0 and
0.002, holding all other variables fixed.

We are 95% confident that the coefficient for free sulfur dioxide log is
between 1.072 and 1.16, holding all other variables fixed.

We are 95% confident that the coefficient for sulphates log is between 2.881
and 4.872, holding all other variables fixed.

We are 95% confident that the coefficient for is red is between 2.881 and
4.872, in relation to white wine, holding all other variables fixed, however
this interval range crosses over zero and might not be statistically
significant.

From this report we can extract our confidence intervals. Here are the confidence intervals.

Frequentist interpretation of confidence intervals * We are 95% confident that the Intercept for
our equation is between 5.78 and 6.58, holding all other variables fixed.

« We are 95% confident that the coefficient for fixed_acidity is between 0.505 and 0.73, holding
all other variables fixed.

« We are 95% confident that the coefficient for citric_acid is between 2.221 and 3.453, holding all
other variables fixed.

« We are 95% confident that the coefficient for residual_sugar is between 0.881 and 0.941, holding
all other variables fixed.

« We are 95% confident that the coefficient for chlorides is between 0.0 and 0.002, holding all other
variables fixed.

. We are 95% confident that the coefficient for free_sulfur dioxide is between 1.072 and 1.16,
holding all other variables fixed.
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We are 95% confident that the coefficient for sulphates is between 2.881 and 4.872, holding all
other variables fixed.

We are 95% confident that the coefficient for is_red is between -0.02 and 0.14, holding all other
variables fixed, in relation to white wine, however this interval range crosses over zero and
might not be statistically significant.

# Construct confidence interval data frame
df 01 = pl.DataFrame({
"term': fit final.conf int().index.tolist(),
'coef': fit final.params.tolist(),
‘conf low': fit final.conf int().loc[:, 0].tolist(),
‘conf _high': fit final.conf int().loc[:, 1].tolist()
1)

# Plotting the confidence interval
df = df 01
plt.figure(figsize=(4, 4))
plt.errorbar(df['coef'], df['term'],
xerr=[df['coef'] - df['conf low'], df['conf high'] - df['coef']],

fmt='0",
capsize=5,
label='Estimates')
plt.axvline(0, color='red', linestyle='--', Tlabel='y=0")
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# Selecting just slopes
df 02 = df 01.filter(pl.col('term') != 'Intercept')
df 02 = df 02.filter(pl.col('term') != 'chlorides log')

# Plotting the confidence interval
df = df 02
plt.figure(figsize=(4, 4))
plt.errorbar(df['coef'], df['term'],
xerr=[df['coef'] - df['conf low'], df['conf high'] - df['coef']],
fmt="0",
capsize=5,
label='Estimates"')
plt.axvline(0, color='red', linestyle='--', Tlabel='y=0")
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# Selecting just slopes
df 03 = df 01.filter(pl.col('term') == 'chlorides log')

# Plotting the confidence interval
df = df 03
plt.figure(figsize=(4, 4))
plt.errorbar(df['coef'], df['term'],
xerr=[df['coef'] - df['conf low'], df['conf high']l - df['coef']],
fmt="0",
capsize=5,
label="Estimates')
plt.axvline(0, color='red', linestyle='--', Tlabel='y=0")
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These three graphs show our confidence intervals visually. Increased sulphates and citric acid are
associated with greater quality, while lower fixed acidity and chlorides are associated with lower
quality.

Optimal Wine Composition Predictions
Using our validated model, we explore different wine compositions to identify formulations that
maximize predicted quality scores.

# Create a DataFrame with new theoretical input values
# Remember to apply log transformations to the relevant variables if your
input is on the original scale
x_new = pd.DataFrame({

'fixed acidity log': [6.0],

‘citric_acid log': [1.23],

'residual sugar log': [.6],

‘chlorides log': [0.04],

'free sulfur dioxide log': [40.0],

'sulphates log': [2],

'is red': [1]

})

# Apply log transformation to relevant columns in X new
skewed vars fit final = ['fixed acidity log', 'citric_acid log',
'residual sugar log', 'chlorides log', 'free sulfur dioxide log',
'sulphates log'l]
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for var in skewed vars fit final:
if var in x_new.columns:
X_new[var] = np.loglp(x new[var])

# Predict the quality using the fit final model
predicted quality new = fit fipal.predict(x_new)

print("Predicted quality for the new theoretical data:")
display(predicted quality new)

# Get prediction intervals (confidence interval for the prediction of a single
new observation)

prediction_intervals =

fit final.get prediction(x_new).summary frame(alpha=0.05)

print("\nPrediction intervals for the new theoretical data:")
display(prediction_intervals)

Predicted quality for the new theoretical data:

0 7.632697
dtype: float64

Prediction intervals for the new theoretical data:

mean mean_se mean_ci_lower mean_ci_upper obs_ci_lower obs_ci_upper

0 7.632697 0.113185 7.410817 7.854577 5.977491 9.287904

# Create a DataFrame with new theoretical input values
# Remember to apply log transformations to the relevant variables if your
input is on the original scale
x_new = pd.DataFrame({

'fixed acidity log': [4.0],

'citric_acid log': [1.23],

‘residual _sugar log': [.6],

‘chlorides log': [0.01],

'free sulfur dioxide log': [140.0],

'sulphates log': [2],

'is red': [1]

})

# Apply log transformation to relevant columns in x_new
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skewed vars fit final = ['fixed acidity log', 'citric_acid log',
'residual sugar log', 'chlorides log', 'free sulfur dioxide log',
'sulphates log']

for var in skewed vars fit fipal:
if var in x_new.columns:

x_new[var] = np.loglp(x_new[var])

# Predict the quality using the fit final model
predicted quality new = fit final.predict(x_new)

print("Predicted quality for the new theoretical data:")
display(predicted quality new)

# Get prediction intervals (confidence interval for the prediction of a single
new observation)

prediction intervals =

fit final.get prediction(x_new).summary frame(alpha=0.05)

print("\nPrediction intervals for the new theoretical data:")
display(prediction_intervals)

Predicted quality for the new theoretical data:

0 8.136363
dtype: float64

Prediction intervals for the new theoretical data:

mean mean_se mean_ci_lower mean_ci_upper obs_ci_lower obs_ci_upper

0 8.136363 0.138071 7.865698 8.407028 6.473913 9.798813

Above we have some predictions using our loss function. The code above applies our quadratic
loss function and allows us to make predictions based on the variables inputted. We tried a bunch
of combinations using the minimum and maximum of each variable’s data points as constraints.
We left one previous example and our best prediction in the code, as most of it was just replacing
a variable with a new number and running the prediction again. The combination on the bottom
was the highest prediction for quality we achieved. This code’s prediction can be interpreted as:

We advise creating red wine with 4.0 g/L fixed acidity, 1.23 g/L citric acid, 0.6 g/L residual
sugar, 0.01 g/L chlorides, 140 mg/L free sulfur dioxide, and 2.0 g/L sulphates. This will give
a wine quality between 6.47 and 9.8.
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Conclusion and Recommendations
Overall, we found that fixed acidity, citric acid, chlorides, and sulphates have the greatest impact

on wine quality. These variables need to be properly monitored and controlled if wine quality is
to be improved.

We advise creating red wine with 4.0 g/L fixed acidity, 1.23 g/L citric acid, 0.6 g/L residual
sugar, 0.01 g/L chlorides, 140 mg/L free sulfur dioxide, and 2.0 g/L sulphates. This will give
a wine quality between 6.47 and 9.8.
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